Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nat Struct Mol Biol ; 31(1): 102-114, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177678

RESUMEN

As embryonic stem cells (ESCs) transition from naive to primed pluripotency during early mammalian development, they acquire high DNA methylation levels. During this transition, the germline is specified and undergoes genome-wide DNA demethylation, while emergence of the three somatic germ layers is preceded by acquisition of somatic DNA methylation levels in the primed epiblast. DNA methylation is essential for embryogenesis, but the point at which it becomes critical during differentiation and whether all lineages equally depend on it is unclear. Here, using culture modeling of cellular transitions, we found that DNA methylation-free mouse ESCs with triple DNA methyltransferase knockout (TKO) progressed through the continuum of pluripotency states but demonstrated skewed differentiation abilities toward neural versus other somatic lineages. More saliently, TKO ESCs were fully competent for establishing primordial germ cell-like cells, even showing temporally extended and self-sustained capacity for the germline fate. By mapping chromatin states, we found that neural and germline lineages are linked by a similar enhancer dynamic upon exit from the naive state, defined by common sets of transcription factors, including methyl-sensitive ones, that fail to be decommissioned in the absence of DNA methylation. We propose that DNA methylation controls the temporality of a coordinated neural-germline axis of the preferred differentiation route during early development.


Asunto(s)
Metilación de ADN , Células Madre Embrionarias , Animales , Ratones , Diferenciación Celular/genética , Células Madre Embrionarias/metabolismo , Factores de Transcripción/metabolismo , Células Madre Embrionarias de Ratones , Células Germinativas/metabolismo , Estratos Germinativos/metabolismo , Mamíferos/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-37778425

RESUMEN

PURPOSE: High-throughput screening (HTS) platforms have been widely used to identify candidate anticancer drugs and drug-drug combinations; however, HTS-based identification of new drug-ionizing radiation (IR) combinations has rarely been reported. Herein, we developed an integrated approach including cell-based HTS and computational large-scale isobolographic analysis to accelerate the identification of radiosensitizing compounds acting strongly and more specifically on cancer cells. METHODS AND MATERIALS: In a 384-well plate format, 160 compounds likely to interfere with the cell response to radiation were screened on human glioblastoma (U251-MG) and cervix carcinoma (ME-180) cell lines, as well as on normal fibroblasts (CCD-19Lu). After drug exposure, cells were irradiated or not and short-term cell survival was assessed by high-throughput cell microscopy. Computational large-scale dose-response and isobolographic approach were used to identify promising synergistic drugs radiosensitizing cancer cells rather than normal cells. Synergy of a promising compound was confirmed on ME-180 cells by an independent 96-well assay protocol, and finally, by the gold-standard colony forming assay. RESULTS: We retained 4 compounds synergistic at 2 isoeffects in U251-MG and ME-180 cell lines and 11 compounds synergistically effective in only one cancer cell line. Among these 15 promising radiosensitizers, 5 compounds showed limited toxicity combined or not with IR on normal fibroblasts. CONCLUSIONS: Overall, this study demonstrated that HTS chemoradiation screening together with large-scale computational analysis is an efficient tool to identify synergistic drug-IR combinations, with concomitant assessment of unwanted toxicity on normal fibroblasts. It sparks expectations to accelerate the discovery of highly desired agents improving the therapeutic index of radiation therapy.

3.
Nature ; 617(7960): 386-394, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37100912

RESUMEN

Inflammation is a complex physiological process triggered in response to harmful stimuli1. It involves cells of the immune system capable of clearing sources of injury and damaged tissues. Excessive inflammation can occur as a result of infection and is a hallmark of several diseases2-4. The molecular bases underlying inflammatory responses are not fully understood. Here we show that the cell surface glycoprotein CD44, which marks the acquisition of distinct cell phenotypes in the context of development, immunity and cancer progression, mediates the uptake of metals including copper. We identify a pool of chemically reactive copper(II) in mitochondria of inflammatory macrophages that catalyses NAD(H) redox cycling by activating hydrogen peroxide. Maintenance of NAD+ enables metabolic and epigenetic programming towards the inflammatory state. Targeting mitochondrial copper(II) with supformin (LCC-12), a rationally designed dimer of metformin, induces a reduction of the NAD(H) pool, leading to metabolic and epigenetic states that oppose macrophage activation. LCC-12 interferes with cell plasticity in other settings and reduces inflammation in mouse models of bacterial and viral infections. Our work highlights the central role of copper as a regulator of cell plasticity and unveils a therapeutic strategy based on metabolic reprogramming and the control of epigenetic cell states.


Asunto(s)
Plasticidad de la Célula , Cobre , Inflamación , Transducción de Señal , Animales , Ratones , Cobre/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , NAD/metabolismo , Transducción de Señal/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Peróxido de Hidrógeno/metabolismo , Epigénesis Genética/efectos de los fármacos , Metformina/análogos & derivados , Oxidación-Reducción , Plasticidad de la Célula/efectos de los fármacos , Plasticidad de la Célula/genética , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/genética
4.
Clin Cancer Res ; 29(7): 1317-1331, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36602782

RESUMEN

PURPOSE: ALK-activating mutations are identified in approximately 10% of newly diagnosed neuroblastomas and ALK amplifications in a further 1%-2% of cases. Lorlatinib, a third-generation anaplastic lymphoma kinase (ALK) inhibitor, will soon be given alongside induction chemotherapy for children with ALK-aberrant neuroblastoma. However, resistance to single-agent treatment has been reported and therapies that improve the response duration are urgently required. We studied the preclinical combination of lorlatinib with chemotherapy, or with the MDM2 inhibitor, idasanutlin, as recent data have suggested that ALK inhibitor resistance can be overcome through activation of the p53-MDM2 pathway. EXPERIMENTAL DESIGN: We compared different ALK inhibitors in preclinical models prior to evaluating lorlatinib in combination with chemotherapy or idasanutlin. We developed a triple chemotherapy (CAV: cyclophosphamide, doxorubicin, and vincristine) in vivo dosing schedule and applied this to both neuroblastoma genetically engineered mouse models (GEMM) and patient-derived xenografts (PDX). RESULTS: Lorlatinib in combination with chemotherapy was synergistic in immunocompetent neuroblastoma GEMM. Significant growth inhibition in response to lorlatinib was only observed in the ALK-amplified PDX model with high ALK expression. In this PDX, lorlatinib combined with idasanutlin resulted in complete tumor regression and significantly delayed tumor regrowth. CONCLUSIONS: In our preclinical neuroblastoma models, high ALK expression was associated with lorlatinib response alone or in combination with either chemotherapy or idasanutlin. The synergy between MDM2 and ALK inhibition warrants further evaluation of this combination as a potential clinical approach for children with neuroblastoma.


Asunto(s)
Neoplasias Pulmonares , Neuroblastoma , Ratones , Animales , Humanos , Quinasa de Linfoma Anaplásico/genética , Aminopiridinas/uso terapéutico , Lactamas Macrocíclicas/farmacología , Lactamas Macrocíclicas/uso terapéutico , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico
5.
Front Oncol ; 12: 958155, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387192

RESUMEN

Human TRIAP1 (TP53-regulated inhibitor of apoptosis 1; also known as p53CSV for p53-inducible cell survival factor) is the homolog of yeast Mdm35, a well-known chaperone that interacts with the Ups/PRELI family proteins and participates in the intramitochondrial transfer of lipids for the synthesis of cardiolipin (CL) and phosphatidylethanolamine. Although recent reports indicate that TRIAP1 is a prosurvival factor abnormally overexpressed in various types of cancer, knowledge about its molecular and metabolic function in human cells is still elusive. It is therefore critical to understand the metabolic and proliferative advantages that TRIAP1 expression provides to cancer cells. Here, in a colorectal cancer cell model, we report that the expression of TRIAP1 supports cancer cell proliferation and tumorigenesis. Depletion of TRIAP1 perturbed the mitochondrial ultrastructure, without a major impact on CL levels and mitochondrial activity. TRIAP1 depletion caused extramitochondrial perturbations resulting in changes in the endoplasmic reticulum-dependent lipid homeostasis and induction of a p53-mediated stress response. Furthermore, we observed that TRIAP1 depletion conferred a robust p53-mediated resistance to the metabolic stress caused by glutamine deprivation. These findings highlight the importance of TRIAP1 in tumorigenesis and indicate that the loss of TRIAP1 has extramitochondrial consequences that could impact on the metabolic plasticity of cancer cells and their response to conditions of nutrient deprivation.

6.
Nature ; 610(7931): 343-348, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36071165

RESUMEN

Cancer progression is driven in part by genomic alterations1. The genomic characterization of cancers has shown interpatient heterogeneity regarding driver alterations2, leading to the concept that generation of genomic profiling in patients with cancer could allow the selection of effective therapies3,4. Although DNA sequencing has been implemented in practice, it remains unclear how to use its results. A total of 1,462 patients with HER2-non-overexpressing metastatic breast cancer were enroled to receive genomic profiling in the SAFIR02-BREAST trial. Two hundred and thirty-eight of these patients were randomized in two trials (nos. NCT02299999 and NCT03386162) comparing the efficacy of maintenance treatment5 with a targeted therapy matched to genomic alteration. Targeted therapies matched to genomics improves progression-free survival when genomic alterations are classified as level I/II according to the ESMO Scale for Clinical Actionability of Molecular Targets (ESCAT)6 (adjusted hazards ratio (HR): 0.41, 90% confidence interval (CI): 0.27-0.61, P < 0.001), but not when alterations are unselected using ESCAT (adjusted HR: 0.77, 95% CI: 0.56-1.06, P = 0.109). No improvement in progression-free survival was observed in the targeted therapies arm (unadjusted HR: 1.15, 95% CI: 0.76-1.75) for patients presenting with ESCAT alteration beyond level I/II. Patients with germline BRCA1/2 mutations (n = 49) derived high benefit from olaparib (gBRCA1: HR = 0.36, 90% CI: 0.14-0.89; gBRCA2: HR = 0.37, 90% CI: 0.17-0.78). This trial provides evidence that the treatment decision led by genomics should be driven by a framework of target actionability in patients with metastatic breast cancer.


Asunto(s)
Neoplasias de la Mama , Toma de Decisiones Clínicas , Genoma Humano , Genómica , Metástasis de la Neoplasia , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Toma de Decisiones Clínicas/métodos , Análisis Mutacional de ADN , Progresión de la Enfermedad , Femenino , Genes BRCA1 , Genes BRCA2 , Genoma Humano/genética , Humanos , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Ftalazinas/uso terapéutico , Piperazinas/uso terapéutico
7.
EMBO Mol Med ; 14(9): e15670, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36069081

RESUMEN

Centrosome amplification, the presence of more than two centrosomes in a cell is a common feature of most human cancer cell lines. However, little is known about centrosome numbers in human cancers and whether amplification or other numerical aberrations are frequently present. To address this question, we have analyzed a large cohort of primary human epithelial ovarian cancers (EOCs) from 100 patients. We found that rigorous quantitation of centrosome number in tumor samples was extremely challenging due to tumor heterogeneity and extensive tissue disorganization. Interestingly, even if centrosome clusters could be identified, the incidence of centrosome amplification was not comparable to what has been described in cultured cancer cells. Surprisingly, centrosome loss events where a few or many nuclei were not associated with centrosomes were clearly noticed and overall more frequent than centrosome amplification. Our findings highlight the difficulty of characterizing centrosome numbers in human tumors, while revealing a novel paradigm of centrosome number defects in EOCs.


Asunto(s)
Centrosoma , Neoplasias Ováricas , Carcinoma Epitelial de Ovario/metabolismo , Carcinoma Epitelial de Ovario/patología , Línea Celular , Centrosoma/metabolismo , Centrosoma/patología , Femenino , Humanos , Neoplasias Ováricas/patología
8.
Genome Res ; 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35858751

RESUMEN

Intronic polyadenylation (IPA) isoforms, which contain alternative last exons, are widely regulated in various biological processes and by many factors. However, little is known about their cytoplasmic regulation and translational status. In this study, we provide the first evidence that the genome-wide patterns of IPA isoform regulation during a biological process can be very distinct between the transcriptome and translatome, and between the nucleus and cytosol. Indeed, by 3'-seq analyses on breast cancer cells, we show that the genotoxic anticancer drug, doxorubicin, preferentially down-regulates the IPA to the last-exon (IPA:LE) isoform ratio in whole cells (as previously reported) but preferentially up-regulates it in polysomes. We further show that in nuclei, doxorubicin almost exclusively down-regulates the IPA:LE ratio, whereas in the cytosol, it preferentially up-regulates the isoform ratio, as in polysomes. Then, focusing on IPA isoforms that are up-regulated by doxorubicin in the cytosol and highly translated (up-regulated and/or abundant in polysomes), we identify several IPA isoforms that promote cell survival to doxorubicin. Mechanistically, by using an original approach of condition- and compartment-specific CLIP-seq (CCS-iCLIP) to analyze ELAVL1-RNA interactions in the nucleus and cytosol in the presence and absence of doxorubicin, as well as 3'-seq analyses upon ELAVL1 depletion, we show that the RNA-binding protein ELAVL1 mediates both nuclear down-regulation and cytosolic up-regulation of the IPA:LE isoform ratio in distinct sets of genes in response to doxorubicin. Altogether, these findings reveal differential regulation of the IPA:LE isoform ratio across subcellular compartments during drug response and its coordination by an RNA-binding protein.

9.
Lung Cancer ; 169: 31-39, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35609409

RESUMEN

INTRODUCTION: Lung cancer remains the most frequent cause of brain metastases (BMs) and is responsible for high morbidity and mortality. Intracranial response to systemic treatments is inconsistent due to several mechanisms: genomic heterogeneity, blood-tumor barrier, and the brain-specific microenvironment. We conducted a study using data from the SAFIR02-LUNG trial. The primary objective was to compare the molecular profiles of non-small-cell lung cancer (NSCLC) with or without BMs. The secondary objective was to explore central nervous system (CNS) outcomes with various maintenance treatment regimens. METHODS: In total, 365 patients harboring interpretable molecular data were included in this analysis. Clinical and biological data were collected. Genomic analyses were based on array-comparative genomic hybridization and next-generation sequencing (NGS) following the trial recommendations. RESULTS: Baseline genomic analyses of copy number variations identified a 24-gene signature specific to lung cancer BM occurrence, all previously known to take part in oncogenesis. NGS analysis identified a higher proportion of KRAS mutations in the BM-positive group (44.3% versus 32.3%), especially G12C mutations (63% versus 47%). Protein interaction analyses highlighted several functional interactions centered on EGFR. Furthermore, the risk of CNS progression was decreased with standard pemetrexed maintenance therapy. The highest rate of CNS progression was observed with durvalumab, probably because of the specific intracranial immune microenvironment. CONCLUSION: This work identified a 24-gene signature specific to lung cancer with BM. Further studies are needed to precisely determine the functional implications of these genes to identify new therapeutic targets for the treatment of lung cancer with BM.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Neoplasias Encefálicas/secundario , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Humanos , Pulmón/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Ensayos Clínicos Controlados Aleatorios como Asunto , Microambiente Tumoral/genética
10.
Leukemia ; 36(5): 1237-1252, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35354920

RESUMEN

Despite recent advances in acute myeloid leukemia (AML) molecular characterization and targeted therapies, a majority of AML cases still lack therapeutically actionable targets. In 127 AML cases with unmet therapeutic needs, as defined by the exclusion of ELN favorable cases and of FLT3-ITD mutations, we identified 51 (40%) cases with alterations in RAS pathway genes (RAS+, mostly NF1, NRAS, KRAS, and PTPN11 genes). In 79 homogeneously treated AML patients from this cohort, RAS+ status were associated with higher white blood cell count, higher LDH, and reduced survival. In AML models of oncogenic addiction to RAS-MEK signaling, the MEK inhibitor trametinib demonstrated antileukemic activity in vitro and in vivo. However, the efficacy of trametinib was heterogeneous in ex vivo cultures of primary RAS+ AML patient specimens. From repurposing drug screens in RAS-activated AML cells, we identified pyrvinium pamoate, an anti-helminthic agent efficiently inhibiting the growth of RAS+ primary AML cells ex vivo, preferentially in trametinib-resistant PTPN11- or KRAS-mutated samples. Metabolic and genetic complementarity between trametinib and pyrvinium pamoate translated into anti-AML synergy in vitro. Moreover, this combination inhibited the propagation of RA+ AML cells in vivo in mice, indicating a potential for future clinical development of this strategy in AML.


Asunto(s)
Leucemia Mieloide Aguda , Mutaciones Letales Sintéticas , Animales , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Mutación , Estrés Oxidativo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Tirosina Quinasa 3 Similar a fms/metabolismo
11.
Sci Immunol ; 6(66): eabe8219, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34860579

RESUMEN

Although CD8+ T cells undergo autonomous clonal proliferation after antigen stimulation in vivo, the expansion of activated CD4+ T cells is limited by intrinsic factors that are poorly characterized. Using genome-wide CRISPR-Cas9 screens and an in vivo system modeling of antigen-experienced CD4+ T cell recruitment and proliferation during a localized immune response, we identified suppressor of cytokine signaling 1 (SOCS1) as a major nonredundant checkpoint imposing a brake on CD4+ T cell proliferation. Using anti­interleukin-2 receptor (IL-2R) blocking antibodies, interferon-γ receptor (IFN-γR) knockout mice, and transcriptomic analysis, we show that SOCS1 is a critical node integrating both IL-2 and IFN-γ signals to block multiple downstream signaling pathways abrogating CD4+ T helper 1 (TH1) cell response. Inactivation of SOCS1 in both murine and human CD4+ T cell antitumor adoptive therapies restored intratumor accumulation, proliferation/survival, persistence, and polyfunctionality and promoted rejection of established tumors. However, in CD8+ T cells, SOCS1 deletion did not affect the proliferation but rather improved survival and effector functions, which allowed for optimal therapeutic outcome when associated with SOCS1 inactivation in CD4+ T cells. Together, these findings identify SOCS1 as a major intracellular negative checkpoint of adoptive T cell response, opening new possibilities to optimize CAR-T cell therapy composition and efficacy.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología , Proteína 1 Supresora de la Señalización de Citocinas/inmunología , Células TH1/inmunología , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos
12.
Mol Oncol ; 15(1): 104-115, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32750212

RESUMEN

High-throughput molecular profiling of solid tumours using core needle biopsies (CNB) allows the identification of actionable molecular alterations, with around 70% success rate. Although several studies have demonstrated the utility of small biopsy specimens for molecular testing, there remains debate as to the sensitivity of the less invasive fine-needle aspiration (FNA) compared to CNB to detect molecular alterations. We aimed to prospectively evaluate the potential of FNA to detect such alterations in various tumour types as compared to CNB in cancer patients included in the SHIVA02 trial. An in-house amplicon-based targeted sequencing panel (Illumina TSCA 99.3 kb panel covering 87 genes) was used to identify pathogenic variants and gene copy number variations (CNV) in concomitant CNB and FNA samples obtained from 61 patients enrolled in the SHIVA02 trial (NCT03084757). The main tumour types analysed were breast (38%), colon (15%), pancreas (11%), followed by cervix and stomach (7% each). We report 123 molecular alterations (85 variants, 23 amplifications and 15 homozygous deletions) among which 98 (80%) were concordant between CNB and FNA. The remaining discordances were mainly related to deletions status, yet undetected alterations were not exclusively specific to FNA. Comparative analysis of molecular alterations in CNB and FNA showed high concordance in terms of variants as well as CNVs identified. We conclude FNA could therefore be used in routine diagnostics workflow and clinical trials for tumour molecular profiling with the advantages of being minimally invasive and preserve tissue material needed for diagnostic, prognostic or theranostic purposes.


Asunto(s)
Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias/genética , Neoplasias/patología , Medicina de Precisión , Biopsia con Aguja Fina , Biopsia con Aguja Gruesa , Variaciones en el Número de Copia de ADN/genética , ADN de Neoplasias/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Estudios Prospectivos , Reproducibilidad de los Resultados
13.
EBioMedicine ; 61: 103049, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33096476

RESUMEN

BACKGROUND: Cervical cancer (CC) remains a leading cause of gynaecological cancer-related mortality world wide and constitutes the third most common malignancy in women. The RAIDs consortium (http://www.raids-fp7.eu/) conducted a prospective European study [BioRAIDs (NCT02428842)] with the objective to stratify CC patients for innovative treatments. A "metagene" of genomic markers in the PI3K pathway and epigenetic regulators had been previously associated with poor outcome [2]. METHODS: To detect new, more specific, targets for treatment of patients who resist standard chemo-radiation, a high-dimensional Cox model was applied to define dominant molecular variants, copy number variations, and reverse phase protein arrays (RPPA). FINDINGS: Survival analysis on 89 patients with all omics data available, suggested loss-of-function (LOF) or activating molecular alterations in nine genes to be candidate biomarkers for worse prognosis in patients treated by chemo-radiation while LOF of ATRX, MED13 as well as CASP8 were associated with better prognosis. When protein expression data by RPPA were factored in, the supposedly low molecular weight and nuclear form, of beta-catenin, phosphorylated in Ser552 (pß-Cat552), ranked highest for good prognosis, while pß-Cat675 was associated with worse prognosis. INTERPRETATION: These findings call for molecularly targeted treatments involving p53, Wnt pathway, PI3K pathway, and epigenetic regulator genes. Pß-Cat552 and pß-Cat675 may be useful biomarkers to predict outcome to chemo-radiation, which targets the DNA repair axis. FUNDING: European Union's Seventh Program for research, technological development and demonstration (agreement N°304,810), the Fondation ARC pour la recherche contre le cancer.


Asunto(s)
Biomarcadores de Tumor , Marcadores Genéticos , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Biología Computacional , Variaciones en el Número de Copia de ADN , Susceptibilidad a Enfermedades , Femenino , Heterogeneidad Genética , Humanos , Mutación , Estadificación de Neoplasias , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Pronóstico , Recurrencia , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/terapia , Secuenciación del Exoma
15.
EMBO J ; 39(2): e102924, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31750958

RESUMEN

Intrinsic genomic features of individual chromosomes can contribute to chromosome-specific aneuploidy. Centromeres are key elements for the maintenance of chromosome segregation fidelity via a specialized chromatin marked by CENP-A wrapped by repetitive DNA. These long stretches of repetitive DNA vary in length among human chromosomes. Using CENP-A genetic inactivation in human cells, we directly interrogate if differences in the centromere length reflect the heterogeneity of centromeric DNA-dependent features and whether this, in turn, affects the genesis of chromosome-specific aneuploidy. Using three distinct approaches, we show that mis-segregation rates vary among different chromosomes under conditions that compromise centromere function. Whole-genome sequencing and centromere mapping combined with cytogenetic analysis, small molecule inhibitors, and genetic manipulation revealed that inter-chromosomal heterogeneity of centromeric features, but not centromere length, influences chromosome segregation fidelity. We conclude that faithful chromosome segregation for most of human chromosomes is biased in favor of centromeres with high abundance of DNA-dependent centromeric components. These inter-chromosomal differences in centromere features can translate into non-random aneuploidy, a hallmark of cancer and genetic diseases.


Asunto(s)
Aneuploidia , Proteína A Centromérica/metabolismo , Centrómero/metabolismo , Cromatina/metabolismo , Cromosomas Humanos/genética , ADN/metabolismo , Células Cultivadas , Centrómero/genética , Proteína A Centromérica/genética , Cromatina/genética , Segregación Cromosómica , ADN/genética , Femenino , Humanos , Masculino
16.
Sci Adv ; 5(10): eaax0821, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31663020

RESUMEN

Using a cell-based assay monitoring differential protein transport in the secretory pathway coupled to high-content screening, we have identified three molecules that specifically reduce the delivery of the major co-receptor for HIV-1, CCR5, to the plasma membrane. They have no effect on the closely related receptors CCR1 and CXCR4. These molecules are also potent in primary macrophages as they markedly decrease HIV entry. At the molecular level, two of these molecules inhibit the critical palmitoylation of CCR5 and thereby block CCR5 in the early secretory pathway. Our results open a clear therapeutics avenue based on trafficking control and demonstrate that preventing HIV infection can be performed at the level of its receptor delivery.


Asunto(s)
Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/patogenicidad , Transporte de Proteínas/fisiología , Receptores CCR5/metabolismo , Secuencia de Aminoácidos , Línea Celular , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Macrófagos/metabolismo , Macrófagos/virología , Receptores CCR1/metabolismo , Receptores CXCR4/metabolismo , Vías Secretoras/fisiología
17.
EBioMedicine ; 43: 253-260, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30952619

RESUMEN

BACKGROUND: There is a lack of information as to which molecular processes, present at diagnosis, favor tumour escape from standard-of-care treatments in cervical cancer (CC). RAIDs consortium (www.raids-fp7.eu), conducted a prospectively monitored trial, [BioRAIDs (NCT02428842)] with the objectives to generate high quality samples and molecular assessments to stratify patient populations and to identify molecular patterns associated with poor outcome. METHODS: Between 2013 and 2017, RAIDs collected a prospective CC sample and clinical dataset involving 419 participant patients from 18 centers in seven EU countries. Next Generation Sequencing has so far been carried out on a total of 182 samples from 377 evaluable (48%) patients, allowing to define dominant genetic alterations. Reverse phase protein expression arrays (RPPA) was applied to group patients into clusters. Activation of key genetic pathways and protein expression signatures were tested for associations with outcome. FINDINGS: At a median follow up (FU) of 22 months, progression-free survival rates of this FIGO stage IB1-IV population, treated predominantly (87%) by chemoradiation, were65•4% [CI95%: 60•2-71.1]. Dominant oncogenic alterations were seen in PIK3CA (40%), while dominant suppressor gene alterations were seen in KMT2D (15%) and KMT2C (16%). Cumulative frequency of loss-of-function (LOF) mutations in any epigenetic modulator gene alteration was 47% and it was associated with PIK3CA gene alterations in 32%. Patients with tumours harboring alterations in both pathways had a significantly poorer PFS. A new finding was the detection of a high frequency of gains of TLR4 gene amplifications (10%), as well as amplifications, mutations, and non-frame-shift deletions of Androgen receptor (AR) gene in 7% of patients. Finally, RPPA protein expression analysis defined three expression clusters. INTERPRETATION: Our data suggests that patient population may be stratified into four different treatment strategies based on molecular markers at the outset. FUND: European Union's Seventh Program grant agreement No 304810.


Asunto(s)
Biomarcadores de Tumor , Fosfatidilinositol 3-Quinasa Clase I/genética , Epigénesis Genética , Neoplasias del Cuello Uterino/genética , Adulto , Anciano , Terapia Combinada , Biología Computacional/métodos , Femenino , Perfilación de la Expresión Génica , Humanos , Persona de Mediana Edad , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , Resultado del Tratamiento , Neoplasias del Cuello Uterino/mortalidad , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/terapia , Secuenciación del Exoma
18.
Clin Cancer Res ; 25(2): 856-867, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30352905

RESUMEN

PURPOSE: Our aim was to identify predictive factors of abiraterone acetate efficacy and putative new druggable targets in androgen receptor (AR)-positive triple-negative breast cancer (TNBC) treated in the UCBG 2012-1 trial.Experimental Design: We defined abiraterone acetate response as either complete or partial response, or stable disease at 6 months. We sequenced 91 general and breast cancer-associated genes from the tumor DNA samples. We analyzed transcriptomes from the extracted RNA samples on a NanoString platform and performed IHC using tissue microarrays. We assessed abiraterone acetate and Chk1 inhibitors (GDC-0575 and AZD7762) efficacies, either alone or in combination, on cell lines grown in vitro and in vivo. RESULTS: Classic IHC apocrine markers including AR, FOXA1, GGT1, and GCDFP15, from patients' tumors allowed identifying abiraterone acetate-responders and nonresponders. All responders had clear apocrine features. Transcriptome analysis revealed that 31 genes were differentially expressed in the two subgroups, 9 of them being linked to proliferation and DNA damage repair. One of the most significant differences was the overexpression, in nonresponders, of CHEK1, a gene encoding Chk1, a protein kinase that can be blocked by specific inhibitors. On the basis of cell line experiments, abiraterone acetate and Chk1 inhibitor combination showed at least additive effect on cell viability, cell cycle, apoptosis, and accumulation of DNA damages. In vivo, orthotopic xenograft experiments confirmed the efficacy of this combination therapy. CONCLUSIONS: This study suggests that apocrine features can be helpful in the identification of abiraterone acetate-responders. We identified Chk1 as a putative drug target in AR-positive TNBCs.


Asunto(s)
Acetato de Abiraterona/farmacología , Antineoplásicos/farmacología , Receptores Androgénicos/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Acetato de Abiraterona/uso terapéutico , Anciano , Anciano de 80 o más Años , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Modelos Animales de Enfermedad , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunohistoquímica , Ratones , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Inhibidores de Proteínas Quinasas/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Sci Rep ; 8(1): 17945, 2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30546106

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

20.
Sci Rep ; 7(1): 15126, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-29123141

RESUMEN

One of the most challenging problems in the development of new anticancer drugs is the very high attrition rate. The so-called "drug repositioning process" propose to find new therapeutic indications to already approved drugs. For this, new analytic methods are required to optimize the information present in large-scale pharmacogenomics datasets. We analyzed data from the Genomics of Drug Sensitivity in Cancer and Cancer Cell Line Encyclopedia studies. We focused on common cell lines (n = 471), considering the molecular information, and the drug sensitivity for common drugs screened (n = 15). We propose a novel classification based on transcriptomic profiles of cell lines, according to a biological network-driven gene selection process. Our robust molecular classification displays greater homogeneity of drug sensitivity than cancer cell line grouped based on tissue of origin. We then identified significant associations between cell line cluster and drug response robustly found between both datasets. We further demonstrate the relevance of our method using two additional external datasets and distinct sensitivity metrics. Some associations were still found robust, despite cell lines and drug responses' variations. This study defines a robust molecular classification of cancer cell lines that could be used to find new therapeutic indications to known compounds.


Asunto(s)
Antineoplásicos/farmacología , Perfilación de la Expresión Génica/métodos , Farmacogenética/métodos , Línea Celular Tumoral , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...